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 In addition, assembling the collar-type device with the 

body-conduction microphones enables this device to control 

the adhesion between the microphones and the dog's body 

surface, including the hair. This control could stabilize 

signal acquisition even if the dog is in activity. 

II. MATERIALS AND METHODS 

A. Fabrication Method 

 Fig. 2 shows the fabricated body-conduction 

microphone and the assembled dog collar. The acoustic 

impedance matching layer was made of silicone rubber 

(Shin-Etsu Silicone, KE-1308, hardness 8 based on ASKER 

C, acoustic impedance is about 1.2 MNs/m3). The acoustic 

impedance of air is 0.0004 MNs/m3. The acoustic 

impedance of human skin and fat is 1.71 MNs/m3 and 1.40 

MNs/m3, respectively [12]. It indicates that this 

intermedium could transmit body-conducted sound about 

98.4% and attenuate airborne sound about 99.9% (transmit 

about 0.1%) according to (1). The air chamber and the case 

of the MEMS microphone (SparkFun Electronics, BOB-

18011) were made of patterned acrylic resin. These 

components were adhered to with adhesive (CEMEDINE 

Co., AX-041) to seal the air chamber. 

 The collar device is assembled with four body-

conduction microphones, a microcomputer (Arduino Nano 

RP2040 Connect), and a LiPo battery. The microcomputer 

is used as an accelerometer for comparison, an AD 

converter, and a wireless communicator. The observed 

sound is 12-bit AD converted and sampled with a sampling 

rate of about 600 Hz and then sent to the laptop via 

Bluetooth Low Energy. The continuous battery life is about 

8 hours. 

B. Evaluation Method 

 To evaluate the sensitivity of the body-conduction 

microphone, a sine wave was output from a subwoofer. It 

was measured at a distance of 0 mm (contact condition) to 

40 mm to obtain the sensitivity ratio of the body-conducted 

sound to airborne sound. This ratio, from now on called the 

body-conducted sound to the airborne sound ratio (BAR), is 

calculated as 
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𝑠 𝑡  and 𝑠 𝑡  is the sampled sine wave by the microphone 

in contact and noncontact condition respectively. The 

diaphragm of the subwoofer was covered with white fox fur 

to reproduce the contact condition on the dog's body surface. 

 To evaluate the scratching intensity detection 

performance of the body-conduction microphone, the 

experimental system imitating the body surface of a dog is 

constructed, as shown in Fig. 3. The force sensor (Interlink 

Electronics Inc., FSR 402) is sandwiched between the 

silicone rubber (    ) and the fur to 

measure scratching force. The surface of the fur was 

scratched at various forces and velocities, and the signals 

were measured with an accelerometer and the body-

conduction microphone. Then, the relationship between the 

mean output value of each sensor and the scratching 

intensity (defined as the product of the velocity and out-of-

plane force of scratching) is investigated. 

 We attached the proposed collar device to an actual dog 

and monitored the dog's scratching behavior. Since the 

subject dog did not show any scratching behavior during 

the experiment, we used a human hand to scratch the dog's 

back this time. The experiment was conducted in an 

ordinary living room with ambient noise such as TV sound. 

After the experiment, the measured sounds were annotated 

based on videos simultaneously taken. The data measured 

by the body-conduction microphone and accelerometer 

were analyzed to estimate scratching intensity. 

III. RESULTS AND DISCUSSION 

A. Sensitivity Evaluation 

Fig. 4 shows the results of the sine wave measurements 

by the body-conduction microphone and the conventional 

microphone. The sound pressure level is calculated as the 

root mean square value of measured sine waves. The 

difference in sound pressure level between 0 mm (in 

contact) and 10 mm (in non-contact) corresponds to BAR. 

The BAR of the body-conduction microphone is 46 dB, 30 

dB higher than that of a conventional microphone. This 

 
 

Fig. 3 Experimental system imitating a dog's body surface. 

   

   

   

       

 

     

     

 
 

Fig. 2 Fabricated body-conduction microphone and the assembled 

dog collar device. 
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