Dioctatin activates ClpP to degrade mitochondrial components and inhibits aflatoxin production
Authors
Tomohiro Furukawa, Hidekazu Katayama, Akira Oikawa, Lumi Negishi, Takuma Ichikawa, Michio Suzuki, Kohji Murase, Seiji Takayama and Shohei Sakuda*
Abstract
Aflatoxin contamination of crops is a serious problem worldwide. Utilization of aflatoxin production inhibitors is attractive, as the elucidation of their modes of action contributes to clarifying the mechanism of aflatoxin production. Here, we identified mitochondrial protease ClpP as the target of dioctatin, an inhibitor of aflatoxin production of Aspergillus flavus. Dioctatin conferred uncontrolled caseinolytic capacity on ClpP of A. flavus and Escherichia coli. Dioctatin-bound ClpP selectively degraded mitochondrial energy-related proteins in vitro, including a subunit of respiratory chain complex V, which was also reduced by dioctatin in a ClpP-dependent manner in vivo. Dioctatin enhanced glycolysis and alcohol fermentation while reducing tricarboxylic acid cycle metabolites. These disturbances were accompanied by reduced histone acetylation and reduced expression of aflatoxin biosynthetic genes. Our results suggest that dioctatin inhibits aflatoxin production by inducing ClpP-mediated degradation of mitochondrial energy-related components, and that mitochondrial energy metabolism functions as a key determinant of aflatoxin production.
Paper Information
- Journal
- : Cell Chemical Biology
- DOI
- : https://doi.org/10.1016/j.chembiol.2020.08.006
- : https://www.cell.com/cell-chemical-biology/fulltext/S2451-9456(20)30303-2