Authors

Tetsuya Yoshida, Takuya Shiraishi, Yuka Hagiwara-Komoda, Ken Komatsu, Kensaku Maejima, Yukari Okano, Yuji Fujimoto, Akira Yusa, Yasuyuki Yamaji, Shigetou Namba*

Abstract

Understanding the innate immune mechanisms of plants is necessary for the breeding of disease-resistant lines. Previously, we identified the antiviral resistance gene JAX1 from Arabidopsis thaliana, which inhibits infection by potexviruses. JAX1 encodes a unique jacalin-type lectin protein. In this study, we analyzed the molecular mechanisms of JAX1-mediated resistance. JAX1 restricted the multiplication of a potexviral replicon lacking movement-associated proteins, suggesting inhibition of viral replication. Therefore, we developed an in vitro potato virus X (PVX) translation/replication system using vacuole- and nucleus-free lysates from tobacco protoplasts, and we revealed that JAX1 inhibits viral RNA synthesis but not the translation of the viral RNA-dependent RNA polymerase (RdRp). JAX1 did not affect the replication of a resistance-breaking mutant of PVX. Blue native polyacrylamide gel electrophoresis of fractions separated by sucrose gradient sedimentation showed that PVX RdRp constituted the high-molecular-weight complex that seems to be crucial for viral replication. JAX1 was detected in this complex of the wild-type PVX replicon but not in that of the resistance-breaking mutant. In addition, JAX1 interacted with the RdRp of the wild-type virus but not with that of a virus with a point mutation at the resistance-breaking residue. These results suggest that JAX1 targets RdRp to inhibit potexviral replication.

Paper Information

Journal
: Journal of Virology
DOI
10.1128/JVI.01506-18
: https://doi.org/10.1128/JVI.01506-18