Authors

Yasuhito Sakuraba, Dami Kim, Su-Hyun Han, Suk-Hwan Kim, Weilan Piao, Shuichi Yanagisawa, Gynheung An, Nam-Chon Paek

Abstract

In most plants, abscisic acid (ABA) induces premature leaf senescence; however, the mechanisms of ABA signaling during leaf senescence remain largely unknown. Here, we show that the rice (Oryza sativa) NAM/ATAF½/CUC2 (NAC) transcription factor ONAC054 plays an important role in ABA-induced leaf senescence. onac054 knockout mutants maintained green leaves, while ONAC054-overexpressing lines showed early leaf yellowing under dark- and ABA-induced senescence conditions. Genome-wide microarray analysis showed that ABA signaling-associated genes, including ABA INSENSITIVE5 (OsABI5) and senescence-associated genes, including STAY-GREEN and NON-YELLOW COLORING1 (NYC1), were significantly downregulated in onac054 mutants. Chromatin immunoprecipitation and protoplast transient assays showed that ONAC054 directly activates OsABI5 and NYC1 by binding to the mitochondrial dysfunction motif in their promoters. ONAC054 activity is regulated by proteolytic processing of the C-terminal transmembrane domain (TMD). We found that nuclear import of ONAC054 requires cleavage of the putative C-terminal TMD. Furthermore, the ONAC054 transcript (termed ONAC054α) has an alternatively spliced form (ONAC054β), with seven nucleotides inserted between intron 5 and exon 6, truncating ONAC054α protein at a premature stop codon. ONAC054β lacks the TMD and thus localizes to the nucleus. The significance of this multilayered regulation of ONAC054 for ABA-induced leaf senescence is also discussed.

Paper Information

Journal
: The Plant Cell
DOI
: 10.1105/tpc.19.00569
: http://www.plantcell.org/content/early/2020/01/06/tpc.19.00569