Authors

Ryosuke Kozakai, Takuto Ono, Shotaro Hoshino, Hidenori Takahashi, Yohei Katsuyama, Yoshinori Sugai, Taro Ozaki, Kazuya Teramoto, Kanae Teramoto, Koichi Tanaka, Ikuro Abe, Shumpei Asamizu, and Hiroyasu Onaka

Abstract

Fusions of fatty acids and peptides expand the structural diversity of natural products; however, polyketide/ribosomally synthesized and post-translationally modified peptides (PK/RiPPs) hybrid lipopeptides are relatively rare. Here we report a family of PK/RiPPs called goadvionins, which inhibit the growth of Gram-positive bacteria, and an acyltransferase, GdvG, which catalyses the condensation of the PK and RiPP moieties. Goadvionin comprises a trimethylammonio 32-carbon acyl chain and an eight-residue RiPP with an avionin structure. The positions of six hydroxyl groups and one double bond in the very-long acyl chain were determined by radical-induced dissociation tandem mass spectrometry, which collides radical ion species to generate C–C bond cleavage fragments. GdvG belongs to the Gcn5-related N-acetyltransferase superfamily. Unlike conventional acyltransferases, GdvG transfers a very long acyl chain that is tethered to an acyl carrier protein to the N-terminal amino group of the RiPP moiety. gdvG homologues flanked by PK/fatty acid and RiPP biosynthesis genes are widely distributed in microbial species, suggesting that acyltransferase-catalysed condensation of PKs and RiPPs is a general strategy in biosynthesis of similar lipopeptides.

Paper Information

Journal
: Nature Chemistry
DOI
: 10.1038/s41557-020-0508-2
: https://www.nature.com/articles/s41557-020-0508-2